Part Number Hot Search : 
MBC13917 4VHC2 P630PI LM317P 45A10501 VSP9432A FZT790A 22100
Product Description
Full Text Search
 

To Download NJU7085 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  NJU7085 -1- high-power & low-voltage stereo audio power amplifier with 3d surround     general description     package outline the NJU7085 is a stereo audio power amplifier with surround sound technology for portable applications. no external coupling capacitors are required because of the differential outputs. the closed loop gain is adjusted by two external resistors. and the standby mode control reduces the supply current. the NJU7085 contains pop & click noise protection circuitry which eliminates noises during turn-on and turn-off transitions and rf rectification canceling circuitry. it is suitable for portable telephone, wireless telephone, button telephone, and other speaker amplifier applications.     application  portable dvd/tv  cradle speaker  mobile-phone/phs     features  operating voltage v + =2.8 to 5.5v  operating current i dd1 =4.6 ma typ. (mobile mode)  supply current in power down mode i dd4 =2 a max. (standby mode)  output power p o =400mw/ch typ. (v + =3v,r l =4 ? )  low output noise 25 vrms typ.  variable surround effect by external resistor  standby function  mute function  c-mos technology  package outline ssop32     block diagram NJU7085 v rout+ rout- lout- lout+ dnc v+ lin rin gnd ealatc vre f ps nflo nfli nfri eala processor block rinp rout eala linp lout eala d0 d1 d2 bias block control block
NJU7085 - 2 -  pin configuration no. symbol function no. symbol function 1 d2 mode control switch 2 17 lin lch input 2 d1 mode control switch 1 18 rin rch input 3 d0 mode control switch 0 19 nfri filter 4 nc - 20 routeala eala processor rch output 5 gnd gnd 21 rinp power amp rch output 6 lout+ lch+ output 22 nc - 7 v+ power supply 23 gnd gnd 8 v+ power supply 24 rout- rch- output 9 lout- lch- output 25 v+ power supply 10 gnd gnd 26 v+ power supply 11 nc - 27 rout+ rch+ output 12 linp power amp lch input 28 gnd gnd 13 louteala eala processor lch output 29 nc - 14 ps filter 30 vref reference voltage 15 nflo filter 31 dnc do not connect 16 nfli filter 32 ealatc filter 16 32 31 30 29 28 27 26 25 24 23 20 21 22 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 d2 d1 d0 nc ealatc dnc vref nc nc nc nflo nfli ps gnd lin rin 18 16 17 gnd lout+ v+ v+ gnd rout+ v+ v+ lout - rout- linp rinp louteala routeala gnd nfri *all power supply pin should be connected.
NJU7085 - 3 -     absolute maximum ratings (ta=25 c) parameter symbol ratings unit supply voltage v + +7 v power dissipation p d 950* 1) (ssop32) 1500* 2) (ssop32) mw output peak current io 500 ma operating temperature range t opr -40 to +85 c storage temperature range t stg -40 to +150 c * 1) eia/jedec standard test board (76.2 x 114.3 x 1.6mm, 2layers, fr-4) mounting * 2) eia/jedec standard test board (76.2 x 114.3 x 1.6mm, 4layers, fr-4) mounting junction temperature: tj = ja (thermal resistance) x pd (power dissipation on your application) x ta(ambient temperature) we recommend to set tj as a guidepost for 0.8 times of the storage maximum temperature.     recommended operating voltage range (ta=25 c) parameter symbol test condition min. typ. max. unit operating voltage range v + - 2.8 3.0 5.5 v     electrical characteristics (ta=25 c,v + =3v, unless otherwise specified) parameter symbol test condition min. typ. max. unit i dd1 no signal, r l = , mobile mode - 4.6 8.0 ma i dd2 no signal, r l = , mute mode - 4.6 8.0 ma i dd3 no signal, r l = , charge mode - 200 400 a operating current i dd4 no signal, r l = , stby mode - - 2.0 a reference voltage vref - 1.27 1.5 1.72 v     ac characteristics (ta=25 c, v + =3v, g v =6db, v in =-20dbv, f=1khz, r l =4 ? , bw=400hz to 30khz, bypass mode, unless otherwise specified) parameter symbol test condition min. typ. max. unit v im1 thd=1% - -4.0 (630) - maximum input voltage v im2 thd=1%, f=100hz, eala mode lin lout, r1+r2=4.7k ? - -21.4 (85) - dbv (mvrms) v no1 rg=0 ? , a-weighted - -92 (25.1) - output noise voltage v no2 rg=0 ? , a-weighted, eala mode - -90 (31.6) dbv ( vrms) thd1 po=200mw - 0.1 - total harmonic distortion (thd+n) thd2 po=200mw, eala mode - 0.1 - % bypass gain g vbyp bypass mode 5.0 6.0 7.0 db surround gain 1 g vsur1 v in =-26dbv, f=100hz, lin lout, eala mode, r1+r2=4.7k ? 17.5 20.5 23.5 db surround gain 2 g vsur2 f=100hz, lin lout, eala mode r1+r2=54.7k ? 6.5 8.5 10.5 db surround gain 3 g vsur3 v in =-26dbv, f=100hz, lin lout, mobile mode, r1+r2=4.7k ? 17.5 20.5 23.5 db surround gain 4 g vsur4 f=100hz, lin lout, mobile mode, r1+r2=54.7k ? 6.5 8.5 10.5 db
NJU7085 - 4 -     ac characteristics (ta=25 c, v + =3v, g v =6db, v in =-20dbv, f=1khz, r l =4 ? , bw=400hz to 30khz, bypass mode, unless otherwise specified) parameter symbol test condition min. typ. max. unit output power p o thd 2%, gv=12db 320 400 - mw power supply rejection raito psrr vripple=1khz/100mvrms - 55 - db mat1 mute mode - -95 - db mute attenuation mat2 stby mode - -130 - db channel separation cs r s =600w, v o =1vrms, f=1khz, a-weighted - 70 - db r in lin, rin terminal - 100 - input resistance r mode mode control terminal 10 - - k ? output offset voltage v od v in =0v -60 - 60 mv     mode control ( ta = 2 5 c, v + =3v) parameter symbol test condition min. typ. max. unit high level input voltage v ih - 0.7v + - v + low level input voltage v il - 0 - 0.25 v     control terminal explanation  mute/standby mode control (mute, stby terminal) operation mode d2 d1 d0 note stby l l l ic is non-active charge h l l reference voltage charge mode mute h l h non output signal bypass l h h input through eala l l h eala-on mobile h h h eala mobile-on inhibited setting except for above -
NJU7085 - 5 -  terminal description (ssop32) pin no. symbol function equivalent circuit terminal dc voltage 1 2 3 d2 d1 d0 mode control switch 7,8, 25,26 5,10, 23,28 v+ gnd power gnd v+ 0 6 9 24 27 lout+ lout- rout- rout+ lch+ output lch- output rch- output rch+ output v+/2 12 21 linp rinp lch input to power amp rch input to poweramp v+/2 100 100 power gnd
NJU7085 - 6 - pin no. symbol function equivalent circuit terminal dc voltage 13 20 louteala routeala lch input to eala processer rch input to eala processer v+/2 14 ps filter v+/2 15 nflo filter v+/2 16 19 nfli nfri filter v+/2 20k 20k 100 20k 100 20k
NJU7085 -7- pin no. symbol function equivalent circuit terminal dc voltage 17 18 lin rin lch input rch input v+/2 30 vref reference voltage v+/2 32 ealatc filter 4,11 22,29 nc no connection 31 dnc do not connection 100 200k 200k 100 20k 20k 100k vref 100 100 10p 10p
NJU7085 - 8 -     application circuit rout+ rout- lout- lout+ dnc v+ lin rin gnd ealatc vre f ps nflo nfli nfri eala processor block rinp rout eala linp lout eala d0 d1 d2 bias block control block r2=50k ci=0.1uf ci=0.1uf c1= 10uf c2= 1uf c3= 0.1uf ri=20k rf=20k r1=4.7k c5= 22nf c6=3.3nf c7=3.3nf + ri=20k rf=20k r l r l r3= 100k r9= 100k r8= 100k rc h lch mode control
NJU7085 - 9 -     application notes the NJU7085 is high power (p o =400mw/ch typ.) and low operating voltage (2.8v to) stereo audio power amplifier with surround sound technology for cellular phones and portable equipments. the external coupling capacitors are not necessary because of the differential outputs. the closed loop gain is set 0 to 43db by selecting the ratio of ri to rf. the NJU7085 contains 6-mode:bypass mode (input through), eala mode (stereo surround), eala mobile mode (surround for narrow space speaker), stby mode (ic is non-active), charge mode (reference voltage charge mode), mute mode (non output signal). the NJU7085 includes pop noise protection circuit eliminating noises during turn-on and turn-off transitions. 1. notice 1.1 the NJU7085 may be not effective for a sound without the reverberation such as fm and monaural signal source. 1.2 eala mobile mode may be not effective in the system that speaker distance is more than 20 cm. in this case, we recommend eala mode. 1.3 NJU7085 includes rf rectification canceling circuit, but please confirm it by an enough examination in your actual application. 2.operation outline fig.1 shows the block diagram of NJU7085 . it consists of eala surround block, power amp block, bias block, thermal shutdown block, control block. the surround effect can be adjusted with eala effect volume (external resister: r2). two external resisters adjust the closed loop gain (ri, rf). the standby function contributes to low consumption by suspecting all circuits. charge mode allows start time to shorten because of the external reference capacitor(c2) charged rapidly. by using external capacitors c2, c3, the NJU7085 reduces pop noise during turn-on and turn-off transitions. please refer to captor 3 detail of pop noise. fig.1 block diagram 100 k ? 100 k ? rout+ rout- lout- lout+ dnc v+ lin rin gnd ealatc vre f ps nflo nfli nfri eala processor block rinp rout eala linp lout eala d0 d1 d2 bias block control block r2=50k ci=0.1uf ci=0.1uf c1= 10uf c2= 1uf c3= 0.1uf ri=20k rf=20k r1=4.7k c5= 22nf c6=3.3nf c7=3.3nf + ri=20k rf=20k r l r l r3= 100k r9= 100k r8= 100k rc h lch mode control
NJU7085 - 1 0 - 2.1external parts 2.1.1 power supply bypassing capacitor select c1 which is enough good thermal characteristics and high frequency characteristics. the wiring pattern between c1 and ic should be shortened to prevent the generating of wiring resistance. 2.1.2 input coupling capacitor the input impedance and input coupling capacitor (ci) form a high pass filter which limits low frequency response. the input impedance is designed about 100k ? . 2.1.3 input resistance (ri) and feedback resistance (rf) of power amplifier. the closed loop gain is adjusted by ri and rf . it is given by the following equation. gv=20log(2rf/ri) = 6 [db] the closed loop gain should be set from 0db to +43db. 2.1.4reference voltage bypassing capacitor reference voltage bypassing capacitor (c2) affects psrr (see fig.2). 2.1.5 eala effect volume the surround effect is able to adjust with eala effect volume (r2). it is able to replace to fixed resister (r1+r2) if you select constant surround effect. 2.1.6 eala tc capacitor eala tc capacitor (c3) reduces pop noise at the time of changing the mode setting (bypass ? eala, bypass ? mobile, eala ? mobile). the pop noise becomes smaller with using large capacitor. 2.1.7 ps capacitor ps capacitor (c5) affects phase characteristics on eala mobile mode. in case of canceling l/r sound, it is able to compensate with using small c apacitor. 2.1.8 control terminal (d0,d1,d2) resistance control terminal resistances (r3, r8, r9) reduce pop noise at the time of changing mode control. 2.1.9 psrr (power supply rejection ratio) vs. c2 large bypassing capacitor (c2) improves psrr shown in fig.2. but a large input coupling capacitor requires more charge time to reach its quiescent dc voltage. select c2 in consideration of psrr and pop noise. psrr vs. frequency v +=3v,rl=4 ? ,ta=25 o c,rin=gnd 0 10 20 30 40 50 60 70 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] psrr[db ] c2=0.47uf c2=1uf c2=2.2uf fig.2 psrr vs. frequency
NJU7085 -11- 2.2 operation explanation 2.2.1 bypass mode fig.2 shows the signal channel at bypass mode. 2.2.2 eala mode fig.3 shows the signal channel at eala mode. ma x min 3d sp filter vr bypass eala,mobile phase shifter bypass eala mobile lout eala linp lout+ lout- rout eala rinp rout- rout+ rin lin l \ r fig.3 eala mode l+r ma x min 3d sp filter vr bypass eala,mobile phase shifter bypass eala mobile lout eala linp lout+ lout- rout eala rinp rout- rout+ rin lin l \ r l+r fig.2 bypass mode
NJU7085 - 12 - 2.2.3 ealamobile mode fig.4 shows the signal channel at eala mobile mode. 3 power on/off and pop noise during turn-on and turn-off transitions. the NJU7085 reduces pop noise by using capacitor for charge & discharge. the following shows tips of reducing pop noise. 3.1 power supply on/off power on/off should be changed on the stby mode (d0,d1,d2=l,l,l) 3.2 stby active (bypass /eala /mobile mode) the recommendation sequence is described as follows. stby (l,l,l) charge (l,l,h) mute (h,l,h) each mode it should be provided the charge time of at least 50 msec for reducing pop noise under application circuit condition (c2=1 f). the charge time is given by the following equation. t = 5 x c2 x 100k [s] 3.3 active (bypass /eala /mobile mode) stby the recommendation sequence is described as follows. each mode mute (h,l,h) stby (l,l,l) fig.4 mobile mode ma x min 3d sp filter vr bypass eala,mobile phase shifter bypass eala mobile lout eala linp lout+ lout- rout eala rinp rout- rout+ rin lin l \ r
NJU7085 -1 3 - typical characteristics reference voltage vs. operating voltage ta=25 o c 0 0.5 1 1.5 2 2.5 3 3.5 4 01234567 operating voltage[v] reference voltage[v] reference voltage vs. ambient temperature v+=3v 0 0.5 1 1.5 2 2.5 3 -50 -25 0 25 50 75 100 125 150 operating voltage[v] reference voltage[v] supply current vs.supply voltage rl =open ta=25 o c 0 2 4 6 8 10 12 01234567 supply voltage[v] supply crrent[ma] bypass,eala eala mobile,mute charge supply current vs. ambient temperature v+=3v,gv=6db,rl=open 0 1 2 3 4 5 -50 0 50 100 150 ambient temperature[ o c] supply current[ma] bypass,eala eala mobile,mute charge supply current vs. supply voltage (stby mode) 1.e-10 1.e-09 1.e-08 1.e-07 1.e-06 1.e-05 1.e-04 1.e-03 01234567 supply voltage[v] supply current[a] supply current vs. ambient temperature (thermal shutdow n) v+=3v,rl=open 0 1 2 3 4 5 6 140 150 160 170 180 190 200 ambient temperature[ o c] supply current[ma]
NJU7085 - 14 - typical characteristics supply current vs ambient temperature(shut dow n) v+=3v,rl=open,vsd=0.25v 1.e-11 1.e-10 1.e-09 1.e-08 1.e-07 1.e-06 1.e-05 1.e-04 1.e-03 1.e-02 1.e-01 1.e+00 -50 0 50 100 150 ambient temperature[ o c] supply current[a] output noise voltage vs. ambient temperature v+=3v rg=0 ? reff=4.7k ? vout=lch,a-w eighted -110 -105 -100 -95 -90 -85 -80 -50 -25 0 25 50 75 100 125 150 ambient temperature[ o c] output noise voltage[dbv] eala mobile bypass maximum input voltage vs. pow er supply voltage rl=4 ? ,f=1khz,thd=1%,bypass -10 -5 0 5 2.5 3 3.5 4 4.5 5 5.5 pow er supply voltage[v] maximum input voltage[dbv] lch rc h maximum input voltage vs. ambient temperature v+=3v,rl=4 ? ,f=100hz,thd=1%,bypass -6 -5 -4 -3 -2 -1 0 -50 0 50 100 150 ambient temperature[ o c] maximum input voltage[dbv] lch rc h maximum input voltage vs. pow er supply voltage rl=4 ? ,f=100hz,reff=4.7k ? ,thd=1%,eala -20 -18 -16 -14 -12 -10 2.533.544.555.5 pow er supply voltage[v] maximum input voltage[dbv] rc h lch cnt terminal voltage vs. supply current(ta) v+=3v,rl=open 1.e-12 1.e-11 1.e-10 1.e-09 1.e-08 1.e-07 1.e-06 1.e-05 1.e-04 1.e-03 1.e-02 1.e-01 0123 vsd terminal voltage[v] supply current[a] ta=-40 o c ta=-25 o c ta=85 o c
NJU7085 -1 5 - typical characteristics maximum input voltage vs. ambient temperature v+=3v,rl=4 ? ,f=100hz,thd=1%,eala -20 -19 -18 -17 -16 -15 -50 0 50 100 150 ambient temperature[ o c] maximum input voltage[dbv] lch rc h maximum input voltage vs. pow er supply voltage rl=4 ? ,f=100hz,reff=4.7k ? ,thd=1%,mobile -20 -18 -16 -14 -12 -10 2.533.544.555.5 pow er supply voltage[v] maximum input voltage[dbv] rc h lch maximum input voltage vs. ambient temperature v+=3v,rl=4 ? ,f=100hz,thd=1%,mobile -20 -19 -18 -17 -16 -15 -50 0 50 100 150 ambient temperature[ o c] maximum input voltage[dbv] lch rc h phase vs, frequency ta) v+=3v,rl=4 ? ,vin=-20dbv, mobile -225 -180 -135 -90 -45 0 45 90 135 180 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] phase[deg] lch,ta=-40,25 o c rc h ta=-40,25,85 o c lch,ta=85 o c thd+n v s . output pow er v+=3v,gv=6db(pa),f =1khz,rl=4 ? ,vout=lch,bypass 0.01 0.1 1 10 100 1.e-03 1.e-02 1.e-01 1.e+00 1.e+01 output pow er[w] thd+n[% ] 25 o c -40 o c 85 o c thd+n v s . output pow er v+=3v,gv=6db(pa),f=100hz,rl=4 ? ,vout=lch,eala 0.01 0.1 1 10 100 1.e-03 1.e-02 1.e-01 1.e+00 1.e+01 output pow er[w] thd+n[% ] 25 o c -40 o c 85 o c
NJU7085 - 1 6 - typical characteristics thd+n v s . output pow er v+=3v,gv=12db(pa),f=1khz,rl=4 ? ,vout=lch,bypass 0.01 0.1 1 10 100 1.e-03 1.e-02 1.e-01 1.e+00 1.e+01 output pow er[w] thd+n[% ] 25 o c -40 o c 85 o c thd+n v s . output pow er v+=5v,gv=6db(pa),f =1khz,rl=8 ? ,vout=lch,bypass 0.01 0.1 1 10 100 1.e-03 1.e-02 1.e-01 1.e+00 1.e+01 output pow er[w] thd+n[% ] 25 o c -40 o c 85 o c thd+n v s . output pow er v+=5v,gv=12db(pa),f=1khz,rl=8 ? ,vout=lch,bypass 0.01 0.1 1 10 100 1.e-03 1.e-02 1.e-01 1.e+00 1.e+01 output pow er[w] thd+n[% ] 25 o c -40 o c 85 o c thd+n v s . output pow er v+=3v,gv=12db(pa),f=100hz,rl=4 ? ,vout=lch,eala 0.01 0.1 1 10 100 1.e-03 1.e-02 1.e-01 1.e+00 1.e+01 output pow er[w] thd+n[% ] 25 o c -40 o c 85 o c thd+n v s . output pow er v+=5v,gv=6db(pa),f=100hz,rl=8 ? ,vout=lch,eala 0.01 0.1 1 10 100 1.e-03 1.e-02 1.e-01 1.e+00 1.e+01 output pow er[w] thd+n[% ] 25 o c -40 o c 85 o c thd+n v s . output pow er v+=5v,gv=12db(pa),f=100hz,rl=8 ? ,vout=lch,eala 0.01 0.1 1 10 100 1.e-03 1.e-02 1.e-01 1.e+00 1.e+01 output pow er[w] thd+n[% ] 25 o c -40 o c 85 o c
NJU7085 -17- typical characteristics voltage gain vs. frequency(ta) v+=3v rl=4 ? reff=4.7k ? vout=lch mobile 0 5 10 15 20 25 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] voltage gain[db] ta=-40 o c ta=25 o c ta=85 o c voltage gain vs. frequency(ta) v+=3v rl=4 ? reff=54.7k ? vout=lch mobile 0 5 10 15 20 25 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] voltage gain[db] ta=-40 o c ta=25 o c ta=85 o c voltage gain vs. frequency(ta) v+=3v,rl=4 ? ,vout=lch,bypass 4 5 6 7 8 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] voltage gain[db] ta=-40,25,85 o c voltage gain vs. frequency(ta) v+=3v,rl=4 ? ,reff=4.7k ? ,vout=lch,eala 0 5 10 15 20 25 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] voltage gain[db] ta=-40 o c ta=25 o c ta=85 o c voltage gain vs. frequency(ta) v+=3v,rl=4 ? ,reff=54.7k ? ,vout=lch,eala 0 5 10 15 20 25 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] voltage gain[db] ta=-40 o c ta=25 o c ta=85 o c psrr vs. frequency(ta) v+=5v,rl=8 ? ,rin=gnd,vout=lch,bypass 0 10 20 30 40 50 60 70 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] psrr[db ] ta=-40,25,85 o c
NJU7085 - 1 8 - typical characteristics pow er dissipation vs. output pow er v+=5v,gv=6db,rl=8 ? ,f=1khz, ta=25 o c,vout=lch,bypass 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 00.511.5 output pow er[w] power dissipationj[w] pow er dissipation vs. output pow e v+=3v,gv=6db,f =1khz ,ta=25 o c,vout=lch,bypass 0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.2 0.4 0.6 0.8 output pow er[w] power dissipation[w] rl=8 ? rl=4 ? output pow er vs. pow er dissipation gv=12db(pa),f=1khz,rl=4 ? ,ta=25 ,bypass 0 0.2 0.4 0.6 0.8 1 1.2 012345 pow er dossipation[v] output power[w] lch,rch thd=1% lch,rch:thd=10% output pow er vs. pow er dissipation gv=12db(pa),f=1khz,rl=8 ? ,ta=25 o c,bypass 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0123456 pow er dossipation[v] output power[w] lch,rch thd=1% lch,rch thd=10% channel separation vs. frequency rin lout v+=3v,gv=6db,rl=4 ? ,,bypass 0 20 40 60 80 100 1.e+00 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] channel separation[db] reff=4.7 ? reff=54.7 ? psrr vs. frequency(ta) v+=3v,rl=4 ? ,rin=gnd,vout=lch,bypass 0 10 20 30 40 50 60 70 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] psrr[db ] ta=-40 o c ta=25,85 o c
NJU7085 -1 9 - typical characteristics [caution] the specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. the application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights. channel separation vs. frequency lin rout v+=3v,gv=6db,rl=4 ? ,bypass 0 20 40 60 80 100 1.e+00 1.e+01 1.e+02 1.e+03 1.e+04 1.e+05 frequency[hz] channel separation[db] reff=4.7 ? reff=54.7 ?


▲Up To Search▲   

 
Price & Availability of NJU7085

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X